

Recherche de Solutions Techniques

Matériau de l'ogive

Pour une fusée standard, on peut donner l'extrait de l'analyse fonctionnelle ci-dessous :

1) Interprétation du cahier des charges :

<u>1°)</u>	<u>) Classement d'importance des propriétés du matériau avec lequel l'ogive es</u>	<u>t réalisée</u>
-	(classée par ordre croissant de 0 sans intérêt à 3 impérative)	

•	Résistance mécanique (solidité)	3
•	Isolant électrique	0
•	Résistance à la température (max 40°c)	2
•	Faible densité (légèreté)	3
•	Résistance aux ultraviolets	1
•	Résistance à l'eau (pluie)	3
•	Résistance à l'abrasion	1

2°) les trois propriétés impératives que doit posséder le matériau de l'ogive sont les suivantes (sans classement)

Résistance mécanique
Densité faible
Résistance à l'eau

Recherche de Solutions Techniques

Matériau de l'ogive

2) Matériau pour l'ogive :

1°) Classement des matériaux pour l'ogive (en relatif) en fonction des propriétés

PVC (plastique), PARAFFINE (matière des bougies), ALLIAGE D'ALUMINIUM (métallique), BALSA (plus léger du bois).

Les valeurs des caractéristiques sont les suivantes :

	Résistance mécanique	Densité	Résistance à l'humidité
	Résistance à la rupture	Plus la valeur est	(pas de détérioration
	(MPa), plus la valeur	faible, plus la	rapide à l'eau)
	est élevée, plus le	pièce est légère à	
	matériau résiste	volume égal	
pvc	55	1,47	oui
paraffine	NC (mais utilisable)	0,86	oui
Alliage d'aluminium	470	2,7	oui
balsa	20	0,14	Poreux, nécessite un
			revêtement

Note: attention, la paraffine fond à partir de 40°C

classement	Résistance à la rupture	Densité
Premier choix	Alliage d'aluminium	balsa
Deuxième choix	pvc	paraffine
Troisième choix	balsa	pvc
Quatrième choix		Alliage d'aluminium
inclassable	paraffine	

2°) Du point de vue du cahier des charges, les trois matériaux qui offrent un mix intéressant de propriétés et que l'on peut retenir (pas de classement) sont les suivants :

(Les matériaux proposés ont tous une résistance mécanique suffisante, le critère principal est la densité)

pvc	
paraffine	
balsa	

La justification de la mise à l'écart de l'alliage d'aluminium est :

Trop grande densité de très loin la plus élevée, valeur de résistance à la rupture surdimensionnée par rapport à l'usage.